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Extracting dynamics from threshold-crossing interspike intervals: Possibilities and limitations
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In this paper we estimate dynamical characteristics of chaotic attractors from sequences of threshold-
crossing interspike intervals, and study how the choice of the threshold level~which sets the equation of a
secant plane! influences the results of the numerical computations. Under quite general conditions we show
that the largest Lyapunov exponent can be estimated from a series of return times to the secant plane, even in
the case when some of the loops of the phase space trajectory fail to cross this plane.

PACS number~s!: 05.45.2a
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I. INTRODUCTION

The continuous-time evolution of many systems is
companied by striking changes in the physical variables
are repeated more or less regularly. This situation typic
arises in the biological sciences, and is encountered in n
robiology ~neuron firings corresponding to voltage spik
@1#!, cardiology (R peaks of electrocardiograms@2#!, mem-
brane biology~bursting oscillations of the cell membran
potential @3#!, etc. Systems with this type of dynamics a
often analyzed by processing time intervals between the
evant events@for example, interspike intervals~ISI’s! @4##.

Different models of spike generation are known. With
the framework ofintegrate-and-fire~IF! models@5–8#, a sig-
nal S(t), being a function of the variables of a low
dimensional dynamical system~DS! is integrated from some
momentT0. The timesTi when spikes occur can then b
defined by the equation

E
Ti

Ti 11
S~ t !dt5u, I i5Ti 112Ti , i 51,2,3, . . . , ~1!

whereu is a firing threshold, andI i are the interspike inter
vals ~IF ISI’s!. When the specified thresholdu is reached, a
sharp pulse is generated@Fig. 1~a!#, and the value of the
integral is reset to zero.

Threshold-crossingmodels~TC! @6#, on the other hand
assume the existence of a threshold levelQ, which defines
the equation of a secant planeS5Q @S(t) is now a variable
of a DS#, and measure time intervals between succes
crossings of the given level by the signalS(t) in one direc-
tion, e.g., from below and up~TC ISI’s! @Fig. 1~b!#. From the
viewpoint of dynamical system theory, TC ISI’s are th
times when the phase trajectory returns to the secant pla

The problem of ISI analysis is important when, for wha
ever reason, the full signalS(t) cannot be recorded, and on
a sequence of firing times is available in the course of
experiment. A sensory neuron that transforms a time-vary
input signalS(t) into the resulting output spike trains ma
serve as a classical example. This transformation was pr
ously investigated within the framework of informatio
theory @9#.

A sensory neuron represents a threshold device with
input and an output: at the input a signal of complex str
ture is received, and at the output a series of pulses is m
PRE 611063-651X/2000/61~5!/5033~12!/$15.00
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sured. Since the output pulses are identical and their sh
does not depend on an external force, the information ab
the properties of the input signal can be encoded only in t
intervals between neuron firings. A question arises: How
a characterization of the input signal be provided when p
cessing a spike train only? During the last years, new ins
into the analysis of spike-train data has appeared. An
may be considered as a new state variable allowing u
characterize the low-dimensional dynamics at the input o
neuron from the observed spike train@5–8,10–12#. Follow-
ing Sauer@5#, the attractor of a chaotic system can be reco
structed@13# using a sequence of time intervals only, a
deterministically driven IF ISI sequences can be dist
guished from stochastically driven series on the basis o
calculation of the prediction error. Sauer@5,7# also proved an
embedding theorem for IF ISI’s. Following Hegger an
Kantz @10#, this theorem is valid for return times as well.
detailed study of how the different properties of a chao
forcing are reflected in an output IF ISI series was perform
by Racicot and Longtin@8#. Ding and Yang@12# demon-
strated the results of chaos control based on TC ISI proc

FIG. 1. Models of spike generation:~a! integrate and fire, and
~b! threshold crossing. Black points indicate the time mome
when a threshold level is reached. A sequence of spikes repre
ing the output signal is given at the bottom of each figure.
5033 ©2000 The American Physical Society
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ing. In our previous contribution@14#, an interpretation of
return times based on an analytical signal approach and
notion of an instantaneous frequency for chaotic oscillati
was suggested, and metrical and dynamical characteristic
some attractors were computed from TC ISI’s.

In the present work we study how the choice of a firi
threshold and the structure of return times influence the
sults of a reconstruction. Our investigations will be carri
out through the estimation of the largest Lyapunov char
teristic exponent~LCE! l1, which is perhaps the most infor
mative invariant of a complicated dynamical process@15#.
We shall discuss the conditions under which the value ofl1
can be estimated from a sequence of TC ISI’s using stan
algorithms without modifications.

Our paper is organized as follows. Section II briefly d
cusses the methods for LCE computation. Features of
reconstruction of dynamical characteristics from spike-tr
data are the subject of Sec. III. In Sec. IV we focus on
influence of the firing threshold and on a qualitative exp
nation of the obtained results.

II. METHODS FOR ESTIMATION OF THE LARGEST
LYAPUNOV EXPONENT

In this section we shall briefly discuss the methods
LCE computation in order to introduce some algorithmic p
rameters of importance for further analysis. It is well know
that an exponential instability of the trajectories is a char
teristic of dynamical chaos. A quantitative measure of t
instability is the positive LCE characterizing the sensitiv
of a DS to variations in the initial conditions. The number
positive exponents in the LCE spectrum is determined by
number of expanding directions of unstable periodic orb
although more complicated situations may also arise@16#.
Within the framework of the present study we shall lim
ourselves to chaotic regimes with a single positive Lyapun
exponentl1. While computingl1 we shall assume that th
phase trajectory, being the solution of a DS for the cho
initial conditions, istypical. Otherwise, the value of the ex
ponent estimated during a finite time spanT can significantly
differ from the value which is obtained theoretically in th
limit T→`. As an example, Gambaudo and Tresser@17#
described a map with very long transient processes~during
up to 1 500 000 iterations it behaves ‘‘chaotically’’ befo
falling into the periodic orbit!. From the viewpoint of the
LCE calculation this means that an apparently stable pos
valuel1 would be attained after part of the transient proce
and only after a very long calculation time will the valu
decrease to zero. Long transient processes and com
variations of the Lyapunov spectrum typically occur in t
vicinity of homoclinic trajectories of a saddle cycle under t
destruction of quasiperiodic oscillations@18#. The phenom-
enon of riddled basins of attraction that can be observed
instance, in connection with chaotic synchronization@19#,
also depends on the fact that the~transverse! Lyapunov ex-
ponent for specific orbits can differ markedly from the co
responding exponent for the typical trajectory@20#. To char-
acterize the behavior of a typical phase trajectory o
sometimes uses the concept of finite-time Lyapunov ex
nents, which quantify the rate of expansion or contract
during a finite-time spanT @16#.
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If we know the equations of a DS generating a pha
trajectory, e.g., in the form of a set of ordinary differenti
equations,

dxW

dt
5 fW~xW ,mW !, xWPRn, mW PRm, ~2!

wherexW is the state vector,fW is the nonlinear vector function
and mW is the parameter vector, then the maximal Lyapun
exponent~or the full LCE spectrum! can be estimated usin
the algorithm suggested by Benettin et al.@21# and by Shi-
mada and Nagashima@22#. This technique is referred to a
the ‘‘standard’’ algorithm for LCE computing@23#. Detailed
discussions of the various aspects of this technique may
found in several publications@24,25#.

The problem of estimation of the largest Lyapunov exp
nent becomes complicated, if Eqs.~2! are unknown. How-
ever, at present a large number of methods for LCE com
tation from experimental data have been developed@26–28#.
The various ways in which to obtain dynamical characte
tics of chaotic attractors from observed time series are
cussed in Refs.@29#. In the present study we use the meth
suggested by Wolfet al. @26#. This algorithm uses the fac
that in many systems the growth of infinitesimal perturb
tions is exponential,

r ~ t !5r 0el1(t0)(t2t0), ~3!

where r 0 is the distance between the so-called fiducial t
jectory and its neighboring orbit at the momentt0, and the
incrementl1(t0) defines the evolution in time of an initia
spatial separation between two state vectors.~The local
growth of perturbations is the function of a point in the pha
space. To show this circumstance, in this section we indic
the dependencel1(t0), since the value of the time momen
corresponds to some point of the fiducial trajectory.! The
average along a typical phase trajectory value of the inc
ment l1(t0) may be taken as the estimation of the larg
LCE. In practice, the method of Ref.@26# allows one to
compute the rate of divergence for small, but finite pertur
tions. This may lead to problems in interpretation of the o
tained results from the mathematical viewpoint, although
was analytically shown that the exponential growth may a
persist for a finite distance between the orbits@25#. Since
dependence~3! is carried out only for small enough value
r (t), renormalizations must be performed while computi
l1. In this procedure, new replacement vectors are chose
the direction of the most rapid divergence and with spec
sizes. Dealing with a single trajectory limits the possibility
the choice of replacement vectors, and we need to searc
a compromise between minimizing its size and reducing
orientational error. The restrictions of the vector size can
formulated as follows:

l 1,r ~ t !, l 2 . ~4!

We need to select some minimal valuel 1 such that the effect
of noise in the experimental data is not accentuated by
numerical calculations. The valuel 2 sets the condition of a
linear approach~or exponential divergence!, and can be in-
troduced usually as some fraction of the size of the attra
~e.g., 5 – 10 %). In the frames of a ‘‘variable evolution time



is
n
e

ha
en
-
lit
of
h
a

m
an
t

be
ta

t b
st
, t
r-
ns

ith
l o
m
-

e
ng

fo

h

re
y
e
ou
-
e

e

d

n-
n,

e

a
oth

the

ha-
ut

ors

al
-
se

’s
er
m-

of
to

E,

ver-
tion
ld—
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algorithm @26#, the replacement is performed when the d
tance between the orbits no longer satisfies the conditio
linear approximation (r . l 2). @As an alternative we may us
the ‘‘fixed evolution time’’ algorithm@26#, with the replace-
ment procedures at regular intervals in time, provided t
the distancer (t) does not become too large during the giv
time spans.# Since the estimation ofl1 is based on the res
toration of the attractor, the result will depend on the qua
of this reconstruction@30#. This leads to the appearance
additional parameters of the numerical computations suc
the embedding dimension, the time delay between the ph
space coordinates of the reconstructed attractor, etc.@13#.

To end our brief description of the techniques for co
puting the largest LCE, let us emphasize a final import
circumstance. In our study we consider the case when
signal being processed~an input signal of IF or TC model! is
a one-dimensional projection of a phase trajectory which
longs to a chaotic attractor. When dealing with experimen
data the dynamical nature of a time series often canno
established. If the signal being analyzed is not determini
we cannot speak about Lyapunov exponents. In this case
algorithm of Ref.@26# defines only some quantitative cha
acteristics of the sensitivity to the choice of initial conditio
@31#, or a measure of predictability.

III. COMPUTING THE LARGEST LYAPUNOV
EXPONENT FROM INTERSPIKE INTERVALS

The problem of restoration of the chaotic attractor w
the one-dimensional projection acting as a forcing signa
an IF model from interspike intervals was studied in a nu
ber of publications@5–8,11#. The quality of the reconstruc
tion depends on the choice of a firing thresholdu. As shown
by Racicot and Longtin@8#, the mean value theorem in som
approximation allows us to consider an IF ISI at high firi
rates as a nonlinear transformation of an input signalS(t):

I i'u/Si , Si5S~Ti !. ~5!

Since the largest LCE is invariant under nonlinear trans
mations, the value ofl1 calculated from IF ISI’s should
coincide with the Lyapunov exponent estimated fromS(t).
However, the problem is to find a sufficiently good tec
nique.

On the one hand, we can consider ISI’s only as a disc
sequenceI 1 ,I 2 , . . . ,I N , restore the attractor using the dela
method (I i ,I i 11 , . . . ,I i 1m21! @13#, and estimate a measur
of chaoticity as the average rate of loss of information ab
the initial conditions per ‘‘iteration.’’ The duration of an it
eration can be taken approximately as the average valu
the interspike intervalsĪ 5(1/N)( i 51

N I i . We have carried
out such a calculation using the Ro¨ssler system

dx

dt
52~y1z!,

dy

dt
5x1ay,

~6!
dz

dt
5b1z~x2c!, a50.15, b50.2, c510.0

as an example. In analogy with Racicot and Longtin@8# we
have chosenS(t)5x(t)140 as the input signal, and hav
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fixed the thresholdu535. As a result an underestimate
value of the largest Lyapunov exponent was obtained~with
an error of about 25%).

Another approach to the problem of LCE estimation co
sists of the following: If the sequence of IF ISI’s is know
according to Eq.~5!,

1

I i
'

1

u
Si5kS~Ti !; ~7!

i.e., at fixed momentsTi we can determine the values of th
input signal multiplied by some constantk. Knowing the
valueskS(Ti), and aiming to restore the forcing signal as
continuous-time variation, we suggest interpolating a smo
function Sint(t) ~e.g., a cubic spline! into the points 1/I i at
the momentsTi . The interpolation will allow us to introduce
a constant step in time, and to restore with some accuracy
linear transformation of the input signal, i.e.,Sint(t)'kS(t)
@Fig. 2~a!#. HenceSint(t) will maintain the metrical and dy-
namical properties of an attractor corresponding to the c
otic forcing. Clearly, the above procedure is carried o
within a certain accuracy, taking into account both the err
of interpolation and the approximate character of Eq.~5!.
However, as one can see from Fig. 3~a!, the valuel1 com-
puted from the signalSint(t) using the algorithm of Ref.@26#
coincides with the result of an estimation ofl1 directly from
S(t) ~i.e., with the largest Lyapunov exponent of the origin
continuous system!. Note that we have obtained a signifi
cantly smaller error of calculation than in the previous ca
~wherel1 was computed from a discrete sequence of ISI!.
We explain this result as follows. An increase of the numb
of points in the interpolated temporal dependence in co

FIG. 2. ~a! Solid curve representing the linear transformation
the forcing signal (1/u)S(t), and a dashed curve corresponding
the result of an interpolation of the points (1/I i)(Ti). The small shift
in time, which has no significance for the calculation of the LC
can be removed if we takeSi5S„(Ti1Ti 11)/2… in Eq. ~5!. ~b!
Black points connected by a dashed line are the points of the a
age instantaneous frequency obtained via a Hilbert transforma
at the time moments appropriate to the crossings of a thresho

v̄H(Ti); white points connected by solid smooth curvev int(t) are
the values of (2p/I i)(Ti) at the same time moments.
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parison with the discrete sequence~i.e., an increase of the
number of points in the restored attractor! may lead to a
decrease of the orientational error of the replacement ve
while computing the LCE using the algorithm of Ref.@26#.
To obtain authentic results we have estimated the LCE
different algorithmic parameters such as time delays, emb
ding dimensions, and parametersl 2, specifying the condition
of the linear approximation@Fig. 3~a!#.

The problem of extracting dynamics from a TC ISI ser
is more complex. A possible approach suggested in our
vious work @14# consists of the following: First, the trans
tion from a set of time intervalsI i to the pointsv(Ti)
52p/I i , appropriate to the values of the average instan

FIG. 3. The largest LCE vs time delayt at various values of the
parameterl 2 computed from a sequence of IF ISI’s without~a! and
with noise~b! and also from a TC ISI series without~c! and with~d!
noise. The embedding dimension was chosen to be equal t
Dashed lines indicate the valuel1 of the original continuous system
estimated from the input signalS(t) by means of the algorithm o
Ref. @26# (l1'0.083). The method of Ref.@21# leads to the result
(l1'0.09).
or

r
d-

e-

-

neous frequency during a return timeI i5Ti 112Ti , is car-
ried out;Ti are the times of crossing of a threshold level~i.e.,
the times when spikes occur!. Second, the pointsv(Ti) are
interpolated by a smooth function~also a cubic spline!
v int(t) for transformation into a signal with constant tim
step @Fig. 2~b!#, used for reconstruction of the attractor.
was shown@14# that the obtained temporal dependence
lows us to describe the qualitative behavior of the aver
instantaneous frequency@Fig. 2~b!#, and that the recon-
structed attractor maintains the properties of the chaotic
cillations S(t) @Fig. 3~c!#.

Although in the present case we may consider other te
niques for computing dynamical characteristics~see, for ex-
ample, Refs.@28,32#!, we decided to use the same approa
and to estimatel1 from v int(t) by means of the method o
Wolf et al. @26#. We suppose that the interpolation allows
to decrease orientational errors in the same way as fo
ISI’s.

Some explanations to the method suggested by Jan
et al. @14# may be appropriate. The discussed technique d
not apply to the analysis of periodic oscillations of a peri
1. In this casev(Ti)5const, and we have a single point in
phase space. In the presence of noise we obtain some d
bution of return times, but an estimation of the dynamic
properties does not allow us to obtain true results. For co
plex periodic or chaotic regimes a transition to slower te
poral variations occurs@i.e., v int(t) is a slower temporal
function in comparison withS(t)#. However, the metrical
and dynamical characteristics are maintained. This is c
firmed by a computation of the largest Lyapunov expon
for the Rössler system, the Anishchenko-Astakhov oscillat
and a series of other models@14#.

To examine the workability of the technique for LCE e
timation in the presence of noise, we added normally dist
uted random values to the forcing signal~with a variance of
1% of the amplitude! and to the threshold level~1% of the
value u for IF ISI’s, and 1022 for TC ISI’s!. The obtained
results @Figs. 3~b! and 3~d!# testify to the stability of the
algorithm to weak disturbances.

Figures 3~c! and 3~d! correspond to a thresholdQ50,
i.e., to the introduction of a Poincare´ sectionx50 of the DS.
In Sec. IV we shall discuss how the choice of a thresh
level influences the result of LCE computations from T
ISI’s.

IV. INFLUENCE OF THE THRESHOLD LEVEL

The problem that we consider in the present study may
reduced to the following: Can the dynamical characteris
of a chaotic attractor be estimated only from a sequence
return times to a secant plane. If yes~what, actually, follows
from the results of Hegger and Kantz@10#!, under what con-
ditions? Special interest is connected with the case when
threshold levelQ is introduced in such a way that not all th
loops of the phase trajectory cross the secant planeS5Q.
Consideration of this case will allow us to formulate limit
tions to our abilities to estimatel1 from interspike intervals.
To be sure in our conclusions, we shall compare the res
obtained with three different DS’s chosen as the source
chaotic oscillationsS(t), namely, the Ro¨ssler system, the
nephron model@33#, and theb-cell model@3,36#. We shall

5.
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compare also the ‘‘variable evolution time’’ and the ‘‘fixe
evolution time’’ algorithms@26# for the largest LCE estima
tion.

A. Rössler system

Consider Eqs.~6! and introduce, as illustrated in Fig. 1~b!,
a secant planex5Q. Here, S(t)5x(t). The largest
Lyapunov exponent computed from TC ISI’s at the differe
values of the threshold level using the ‘‘variable evoluti
time’’ algorithm @26# demonstrates a rather complex depe
dence onQ. This is shown in Fig. 4~a!. As one can see from
this figure there are two regions (0<Q,4 and 10,Q
,13.5), within the limits of which the dynamical propertie
of the chaotic attractor can be determined with good ac
racy ~the error of estimation forl1 does not exceed 10–

FIG. 4. ~a! The largest LCE computed from TC ISI’s vs thres
old level Q. Dashed lines indicate the ranges of error612%. ~b!
and~c! The positive exponent vst at variousl 2’s for the thresholds
Q511 and 5.35.~d! The maximal LCE vsl 2 at varioust ’s for the
threshold levelQ55.35.
t

-

-

15 %, and may be less if the length of time series increas!.
The dependencel1(Q) in Fig. 4~a! was obtained for series
of about 2000 return times.

Outside of the above intervals, the results differ sign
cantly from the valuel1 corresponding to the chaotic inpu
signal. The maximal error of estimation occurs forQ'5.35.
More detailed calculations ofl1 performed for severa
thresholds are shown in Figs. 3~c! (Q50), 4~b! (Q511),
4~c!, and 4~d! (Q55.35). The sensitivity of the algorithm to
the choice ofl 2 does not allow us to obtain an authent
estimation of the degree of chaoticity in the latter case.

Aiming to explain the complex behavior ofl1(Q), we
have analyzed the structure of the return times~Fig. 5!. In the
region 0<Q,4, a crossing of the threshold level occu
during each oscillation. The sequence of time intervals~TC
ISI’s! is stationary@Fig. 5~a!#, and the size of the attracto
reconstructed from the interpolated temporal depende
v int(t) using the delay method is defined by the distributi
of I i @Figs. 5~b! and 5~c!#.

An increase ofQ leads to the absence of a thresho
crossing during some oscillations:I i ’s arise with large values
@Fig. 5~d!#. The presence of several temporal scales in a
quence of TC ISI’s leads to the appearance of several sp
scales in the reconstructed attractor@Fig. 5~e!#, and because
of different probabilities for large and smallI i ’s the phase
trajectory will belong to the smaller region of a phase spa
('10– 15 % of the size of attractor! for a large part of the
time @Fig. 5~e!#. The condition of linear approximation~pa-
rameterl 2) should now be introduced for each spatial sc
separately; however, even at the essential reduction of
given parameter the dependencel1( l 2) similar to Fig. 4~d! is
kept.

With further increase ofQ, time intervals occur corre-
sponding to three oscillations@Fig. 5~g!#. However, if the
probabilities of variousI i ’s are of the same order the se
quence of TC ISI’s@Fig. 5~g!# preserves the dynamical prop
erties of the forcing signalS(t). In the regionQ.13.5 there
are time intervals amongI i ’s corresponding to five or more
oscillations, with probabilities that are very small, but d
tinct from zero@Figs. 5~j! and 5~l!#. In this region it is obvi-
ously impossible to compute the value of the largest LCE

On the basis of the above investigations, we can formu
a number of conditions under which one can estimate
dynamical characteristics of the Ro¨ssler system from TC
ISI’s using the ‘‘variable evolution time’’ algorithm@26#.

~1! The sequence ofI i ’s must be stationary, and the prob
abilities of various return times in the distribution functio
must be approximately of the same magnitude~for ranges of
I i ’s with probabilities distinct from zero!.

~2! The average value of the time interval (Ī ) should not
exceed the characteristic temporal scale of the system u
study ~prediction time or Lyapunov time@8,37#!.

Let us discuss these conditions. The first condition
quires an approximate balance of times during which
phase trajectory belongs to various regions of the rec
structed chaotic attractor in the presence of several sp
scales. The second condition arises from the following pr
lem: The increase of the average time intervalĪ under a shift
of the threshold level and the resulting excess of some c
acteristic temporal scale of the system~the prediction time!
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FIG. 5. The sequences of TC ISI’s, phase portraits restored from the interpolated temporal dependencesv int(t) ~for simplicity we have
dropped the designation ‘‘int’’ in the figures! and distribution functions appropriate toQ50 @~a!–~c!#, Q55.35 @~d!–~f!#, Q511 @~g!–~i!#,
andQ515 @~j!–~l!#.
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lead to a loss of information about the dynamics. As a c
sequence, the maximal valuel1 which can be computed
from the TC ISI series decreases inversely proportional tĪ

@Fig. 6~a!#. However, even if the restrictions onĪ do not
allow us to obtain the largest Lyapunov exponent the te
nique for LCE computation can serve as a qualitative e
mation of a measure of chaoticity. For example, Fig. 6~b!
shows the dependence ofl1 on the control parameterc of
Eqs. ~6! computed by the method of Refs.@21,22# in com-
parison with results of an estimation of the largest LCE fro
TC ISI’s measured by fixation of the fifth crossing of a s
cant plane. We note the qualitative agreement in the va
tion of the two curves.

The above results were obtained within the framework
the ‘‘variable evolution time’’ algorithm which realizes th
replacement procedures whenever a fixed spatial separ
between nearby phase trajectories is reached~the condition
of linear approach!. As one can see, for the caseQ55.35
this technique may not work for attractors with several s
-

-
i-

-
a-

f

ion

-

tial scales in phase space. Formally, however, the algori
of Ref. @26# has no limitations with respect to how the r
placement procedures can be carried out.

In particular, it is possible to analyze the average rate
divergence for a fixed time spanTr ~the ‘‘fixed evolution-
time’’ algorithm of Ref.@26#!. However, in this case we hav
an additional parameter of the numerical computations. IfTr
is chosen small, the calculation time increases significa
~the search for nearest neighbors at each replacement p
dure taking a major part of the time!. Replacements that ar
performed too often may also lead to an increase of the
entational errors. On the other hand, having chosen a la
Tr we risk obtainning an underestimated valuel1 if the di-
vergence of nearby trajectories leaves the frameworks of
linear approach during the given time span. To obtain
authentic estimation of the largest LCE, its dependence fr
Tr should be investigated, along with its dependence on
time delay, embedding dimension, etc.

The ‘‘fixed evolution time’’ algorithm@26# requires more
calculation time. However, it allows us to estimate dynam
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cal characteristics of chaotic attractors at the presence of
eral clearly expressed temporal scales, when it is not alw
obvious how to introduce the condition of linear approa
~parameterl 2 in our designations! ~Fig. 7!. Thus the first of
the two conditions is no longer necessary.

So far, we have mainly discussed the technical aspec
the method of Ref.@26#. If, aiming to generalize the obtaine

FIG. 6. ~a! Estimation of the maximal LCE whenĪ exceeds the
characteristic temporal scale of a system.~b! The largest exponen
computed using the method of Refs.@21,22# vs a control paramete
of the Rössler system~solid curve! and the valuesl1 estimated
from TC ISI’s measured from every fifth crossing of the sec
plane~dashed curve!.

FIG. 7. ~a! The largest LCE computed from TC ISI’s vs thres
old level Q appropriate to the replacement procedures after a fi
time span~curve 1!, and after a fixed spatial separation~curve 2!.
~b! The values ofl1 vs Tr at varioustP@2;5# for the threshold
Q55.35.
v-
ys

ofresults, we neglect for a moment the details of the algorith
then we can say that the sequence of return times maint
the dynamical properties of a chaotic attractor even in
case when not all the phase trajectories cross the se
plane. Thus, at the restriction to the average value ofI i ’s
~second condition!, the largest Lyapunov exponent is invar
ant to the choice of a threshold level.

This conclusion is not trivial. A shifting of the secan
plane clearly results in essential changes of the structur
the return time map. While at the correct choice of the sec
~when all the phase trajectories cross it! the return time map
is similar to some extent to the Poincare´ map@Figs. 8~a! and
8~b!#, when shifting the threshold level the situation becom
complicated@Fig. 8~c!#. Before discussing the obtained re
sults let us consider other sources of chaotic oscillations

B. Nephron model

Using the Ro¨ssler system as an example, we have fou
that the largest LCE computed by the method of Ref.@26#
does not depend significantly on the details of the repla
ment procedures if a sequence of TC ISI’s contains only
temporal scale@Fig. 5~c!#. This is the simplest possible cas
Aiming to test the invariance of dynamical characteristics
the change of a threshold, we are interested in proces
interspike intervals with several scales~i.e., with larger
ranges ofI i ’s!. One system demonstrating such a behav
in addition to the dependence on the choice of a thresh
level, is the nephron model@33#.

t

d

FIG. 8. ~a! Poincare´ map of the Ro¨ssler system.~b! and ~c!
Return time maps appropriate toQ50 and 11, respectively.
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The nephron is the functional unit of the kidney. Its ma
structure is described in the publications by Mosekilde a
Barfredet al. @33#. Here a dynamical model of nephron a
toregulation is presented in terms of the six ordinary diff
ential equations

dPt

dt
5

1

Ctub
F ~12Ha!S 12

Ca

Ce
D Pa2Pg

Ra
2Freab2

Pt2Pd

RHen
G ,

dr

dt
5v r ,

dv r

dt
5

Pav2Peq

v
2dv r ,

~8!
dX1

dt
5

Pt2Pd

RHen
2

3X1

T
,

dX2

dt
5

3~X12X2!

T
,

dX3

dt
5

3~X22X3!

T
.

An explanation of the variables and parameter value
given in Appendix A. The description of Eqs.~8! in more
detail can be found in Ref.@33# and references therein. W
may note, however, thatPt represents the fluid pressure
the proximal tubule immediately after the glomerulus. Me
surements of this pressure for anesthetized rats show ch
teristic self-sustained oscillations with a period of 20–40
@34#, and for rats with elevated blood pressure the osci
tions tend to become chaotic@35#. r denotes the radius of th
afferent arteriole leading blood to the nephron, and the v
ables denotedX1 ,X2, andX3 are intermediate variables in
third order smooth delay. In total, the model represent
feedback~the tubuloglomerular feedback! with a time delay
T and a relatively high loop gain. This gain is controlled to
large extent by the relation between the equilibrium press
Peq in the active part of the afferent arteriole and the flow
nephronic liquid into the loop of HenleFHen5(Pt
2Pd)/RHen . The model represents a relatively accurate
count of the basic physiological mechanisms responsible
the chaotic dynamics, and over the years it has been te
and examined in many different ways.

Figures 9~a! and 9~b! show the two-dimensional projec
tion of the chaotic attractor being the solution to the neph
model and the temporal dependence of the first variable,
tubular pressurePt . For anyQ @Fig. 9~b!# the sequence o
return times to a secant plane@Fig. 9~c!# is similar to the TC
ISI series of a Ro¨ssler system at large threshold levels. Th
means that the same problems arise, namely, attractors
several spatial scales, sensitivity to the choice of replacem
procedure while computingl1, etc.

The results of an estimation of the largest LCE at differ
thresholds are given in Fig. 10~a!. We can see that the ‘‘vari
able evolution time’’ algorithm@26#, with the replacemen
procedures defined in terms of a fixed spatial separation
tween phase orbits, again lead to underestimated va
when chaotic regimes with clearly expressed temporal sc
are analyzed@curve 1 in Fig. 10~a!#. An acceptable accurac
is obtained only under the condition that the probabilities
variousI i ’s in the distribution function are of the same ord
(1.2,Q,1.6). Computingl1 by means of the ‘‘fixed evo-
lution time’’ algorithm @curve 2 in Fig. 10~a!# is more effec-
tive. Thus the invariance of the dynamical characteristic
d

-

is

-
ac-
c
-

i-

a

re
f

-
or
ted

n
he

ith
nt

t

e-
es
es

f

is

confirmed at the restriction toĪ . Similar results can be ob
tained if we computel1 when changing the control param
eter of Eqs.~8!. This is illustrated in Fig. 10~b! ~also see
Appendix A!.

C. Pancreatic b-cell model

A very different example of a system with several clea
expressed temporal scales is a burst oscillator~see Ref.@3#,
and references therein!. Bursting is a slow alternation be
tween a silent phase and an active phase of fast oscillati

Consider the equations of theb-cell model proposed by
Sherman@3#:

dV

dt
5@2I Ca2I K2gSS~V2VK!#/t,

~9!
dn

dt
5l~n`2n!/t,

dS

dt
5~S`2S!/tS ,

FIG. 9. ~a! and~b! The solution of Eqs.~8! in a chaotic regime.
~c! and~d! Series of TC ISI’s and a return time map appropriate
Q51.3.
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I Ca~V!5gCam`~V2VCa!, I K~V,n!5gKn~V2VK!,

x`5
1

11exp@~Vx2V!/ux#
, x5m,n,S.

In accordance with Ref.@36#, V is the voltage across th
cell membrane,n is the fraction of potassium channels th
are open, andS is a slow variable which may be related
the intracellular calcium concentration. Parameter values
system~9! are given in Appendix B.

The solution to Eqs.~9! is shown in Fig. 11~a!. Shifting of
a threshold level over wide ranges does not significan
change the probability distribution of TC ISI’s@Fig. 11~b!#
or the return time map@Fig. 11~c!#. Hence the larges
Lyapunov exponent does not depend on the choice of
threshold, and can be estimated with good accuracy@Fig.
11~d!#. This again confirms the possibility of extracting d
namical properties of a chaotic attractor from a discrete
quence of time intervals in the presence of several temp
scales.

Within the scope of the present study we cannot sugge
more general proof of the invariance of the dynamical ch
acteristics to the choice of a secant plane~assuming, of
course, that the second condition is satisfied!. A possible
qualitative explanation consists of the following.

Consider, for simplicity, values of the average instan
neous frequencyv(t i)52p/I i at the momentst i5 i Ī , i.e.,
with a uniform step in time. Let us choose two pieces of
signalS(t), each containing five oscillations as shown in F
12~a!. For each of these pieces a small shift of the thresh
level leads to the situation when, during the third oscillatio
the trajectory does not cross the threshold any longer@Fig.

FIG. 10. ~a! The largest LCE computed from TC ISI’s vs thres
old level Q appropriate to the replacement procedures after a fi
spatial separation~curve 1!, and after a fixed time span~curve 2!.
The dashed line indicates the value ofl1 estimated fromPt(t)
using the method of Ref.@26#. ~b! The dependence ofl1 on the
control parameter of Eqs.~8! ~see Appendix A! computed from
Pt(t) using the algorithm of Ref.@26# ~black points! and from TC
ISI’s ~white points!.
or
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12~a!#. At the transition to interpolated temporal depe
dences, for the levelQ1 we shall obtain two smooth curve
v1(t) and v2(t) passing through the pointsv1

15v int(t i)
52p/I i , . . . ,v4

15v int(t i 13)52p/I i 13 and v1
25v int(t j )

52p/I j , . . . ,v4
25v int(t j 13)52p/I j 13 at the moments

t i , . . . ,t i 13 and t j , . . . ,t j 13 @Fig. 12~b!#. We indicate each
of two chosen pieces of the signalS(t) by indexesi and j.
The t i ’s and t j ’s refer to the times when the given piece
cross the thresholdQ1. If the valueD05uv1

12v1
2u is small

enough, the condition of linear approach is also satisfied
the distance between the curves during the computation
~three interspike intervals!; then the one-dimensional ana
logue of the local Lyapunov exponent can be determined
follows @Fig. 12~b!#:

d

FIG. 11. ~a! The potential of the cell membrane.~b! The prob-
ability distribution of return times.~c! Return time map.~d! The
largest LCE vs the control parameter computed fromV(t) by means
of the method of Refs.@21,22# ~black points!, and directly from
return times~white points!.



ad

tr
th
re

i
a
lit

a
l.
an

y-
mes
ys-

si-
of

CE
ISI

turn

in-

e of
y as
dur-
us

t
ig-
er

e
ase

the
s:

the
As a

nt
e

ime
ly
en
vel
cal

d

n-

ries
sh-

5042 PRE 61PAVLOV, SOSNOVTSEVA, MOSEKILDE, AND ANISHCHENKO
l1~ t0!5
1

3 Ī
ln

D1

D0
, D15uv4

12v4
2u. ~10!

The insignificant shift of the threshold~the levelQ2) re-
sults in a change of the sequencesvk

m . For each of them the
pointsv1

m andv4
m remain practically unchanged, and inste

of v2
m andv3

m there will be one pointv2
m̄, but with a value

half as large as in the previous case@Fig. 12~c!#. This, in
turn, results in changes of the rate of divergence of the
jectories at the local regions of the attractor. However,
average characteristics of the degree of chaoticity will
main the same as determined by Eq.~10! @Fig. 12~c!#. A
similar discussion can be carried out for a nonuniform step
time. Clearly, these arguments do not serve as a strict m
ematical proof, and should be interpreted only as a qua
tive explanation.

Note that there are no theoretical results showing how
attractor’s characteristics depend on the threshold leve
theory, the correct Lyapunov exponent can be found for
Q. For example, Sauer’s theorem@7# has no limitations on
the value of a threshold. But, in the work@6# ~as well as in

FIG. 12. ~a! A piece of the signalS(t) and two thresholdsQ1

59 andQ2510. ~b! The interpolated temporal dependencesv1(t)
and v2(t) for the two pieces ofS(t) appropriate to the threshol
Q1. Black points indicate the values ofvk

m . ~c! The interpolated
temporal dependencesv1(t) andv2(t) for two pieces ofS(t) ap-
propriate to the thresholdQ2. Dashed curves indicate the depe
dences shown in Fig. 12~b!.
a-
e
-

n
th-
a-

n
In
y

other papers, see e.g., Ref.@8#! it was mentioned that in
practice~when processing finite amount of data!, the quality
of reconstruction depends onQ. Following Ref.@6#, at some
levels, ‘‘for a fixed embedding dimension the length of d
namical time spanned by a reconstructed ISI vector beco
comparable with the decorrelation time of the chaotic s
tem, which has the effect of attractor degrading.’’

The aim of our paper is a numerical testing of the pos
bilities to estimate perhaps the most informative invariant
a complicated dynamical process~the largest LCE! from
time intervals. Using several models we compute the L
with good enough accuracy even in the case when TC
series contain large intervals provided that the mean re
time does not exceed some temporal scale~which corre-
sponds approximately to the Lyapunov time, i.e., to the
verse Lyapunov exponent!. Moreover, if some loops of
phase space trajectory fail to cross the threshold, the valu
the LCE can be extracted almost with the same accurac
in the case when the crossing of a threshold takes place
ing each oscillation. These results differ from the previo
computing of correlation dimension@6#, that was signifi-
cantly more sensitive to the choice ofQ. Similar results were
obtained for other models@38#.

Note also that, in practice~when processing finite amoun
of data!, the results of numerical computations do not s
nificantly depend on the length of time series if all oth
parameters are fixed~see Fig. 13, for example!. The algo-
rithm of Ref. @26# is considerably more sensitive to th
choice of initial separations between two orbits in the ph
space. This dependence is similar to the one in Fig. 4~d! for
large thresholds, and gives no possibility of estimating
measure of chaoticity. The reason for this is as follow
When large ISI’s are analyzed, a small~but finite! perturba-
tion leaves the framework of the linear approach during
time between spikes, and can reach the size of attractor.
result, an underestimated value of the LCE is obtained@see
Fig. 4~a! for large thresholds#.

V. CONCLUSIONS

In the present work we have considered two differe
models of spike generation~namely, the integrate-and-fir
model and the threshold-crossing model!, and have sug-
gested a procedure for a transition to a continuous-t
variation for IF ISI’s, allowing us to reproduce qualitative
the linear transformation of an input signal for the giv
model. We have analyzed how the choice of threshold le
influences the results of reconstruction of the dynami

FIG. 13. The positive exponent estimated from the TC ISI se
of the Rössler system vs the length of time series at various thre
olds Q511 ~dependence 1!, Q515 ~dependence 2!, and Q517
~dependence 3!.
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characteristics from a series of return times~TC ISI’s!, and
showed that under quite general conditions the larg
Lyapunov exponent is invariant to the choice of a thresho
and can be determined from TC ISI’s even in the case w
not all loops of the phase trajectory cross the secant plane
course, when speaking about the invariance of dynam
properties we understand that the largest LCE can be
mated only with a certain accuracy, taking into account b
the finite amount of data and the dependence of the a
rithm @26# on parameters of the numerical computations.
us note that, instead of shifting a secant plane, we could fi
constant value of a threshold (Q.0) and change only the
amplitude of the input signalS(t). That would lead to similar
conclusions.

In our paper the results obtained for a Ro¨ssler system, a
nephron model, and a pancreaticb-cell model are demon
strated. Actually our study was not limited only to the
systems. Similar conclusions follow from the analysis
other models of nonlinear dynamics and mathematical b
ogy, for which the possibility of extracting dynamics is co
firmed if the average value of the return times does not
ceed a characteristic temporal scale of the dynamical sys
A number of interesting results have been obtained for c
otic attractors with several equilibrium points relative
which the movement of a phase trajectory takes place~for
example, the Lorenz system!. However, the analysis of suc
systems is a rather complex problem, which will constitut
separate investigation.
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APPENDIX A: NEPHRON MODEL

The relations between variables in Eqs.~8! are as follows:

Ra5Ra,0@b1~12b!r 24#,

Pg5Pt1aCe1bCe
2 ,

Pav50.5S Pa1Pg2b~Pa2Pg!
Ra,0

Ra
D ,

Peq5p1~r 21!1p2 exp10(r 20.8)

1CS p31p4r 1
p5

11exp213(r 20.4)D ,

CS 3X3

T D5Cmax2
Cmax2Cmin

11expaS 3X3

TFHen,0
2SD ,

S512
1

a
lnS Ceq2Cmin

Cmax2Ceq
D

st
,
n

Of
al
ti-
h
o-
t
a

f
l-

-
m.
a-

a

The value ofCe is uniquely defined from an algebraic equ
tion:

S b1
Re

Ra
bHaDCe

31S a1
Re

Ra
bCa~12Ha!1

Re

Ra
aHaDCe

2

1S Pt2Pv1
Re

Ra
aCa~12Ha!1

Re

Ra
~Pt2Pa!HaDCe

1~Pt2Pa!
Re

Ra
Ca~12Ha!50.

Model variables.

Variable Explanation

Pt Proximal tubular pressure
r Radius of the active part of the afferen

arteriole
X1 ,X2 ,X3 Intermediate variables in the delay chain
Ce Plasma protein concentration in the effe

ent arteriole
Pg Glomerular pressure
Ra Flow resistance of afferent arteriole
Peq Equilibrium pressure in the variable part o

the afferent arteriole
Pav Average pressure in the variable part of t

afferent arteriole

Model parameters.

Ctub53.0 nL/kPa Cmin50.20
Ha50.5 Cmax50.44
Pa513.3 kPa Ceq50.38
Pv51.3 kPa Ca554 g/L
Pd50.6 kPa a52231023 kPa ~L/g!
Fhen,050.2 nL/s b50.3931023 kPa (L/g)2

Freab50.3 nL/s p151.6 kPa
Rhen55.3 kPa (s/nL) p25631023 kPa
Ra,052.3 kPa (s/nL) p356.3 kPa
Re51.9 kPa (s/nL) p457.2 kPa
v520 kPa s2 p554.7 kPa
d50.04 s21 T53 s
b50.67 a514.5

APPENDIX B: PANCREATIC b-CELL MODEL

Model parameters.

gCa53.6 Vm5220 mV
gK510.0 Vn5216 mV
gS54.0 VS5240 mV
t520 ms um512 mV
tS535 s un55.6 mV
VCa525 mV uS510 mV
VK5275 mV l50.85
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