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Extracting dynamics from threshold-crossing interspike intervals: Possibilities and limitations
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In this paper we estimate dynamical characteristics of chaotic attractors from sequences of threshold-
crossing interspike intervals, and study how the choice of the threshold (eh&th sets the equation of a
secant planeinfluences the results of the numerical computations. Under quite general conditions we show
that the largest Lyapunov exponent can be estimated from a series of return times to the secant plane, even in
the case when some of the loops of the phase space trajectory fail to cross this plane.

PACS numbegs): 05.45-a

[. INTRODUCTION sured. Since the output pulses are identical and their shape
does not depend on an external force, the information about
The continuous-time evolution of many systems is acthe properties of the input signal can be encoded only in time
companied by striking changes in the physical variables thaptervals between neuron firings. A question arises: How can
are repeated more or less regularly. This situation typically characterization of the input signal be provided when pro-
arises in the biological sciences, and is encountered in ne¢€ssing a spike train only? During the last years, new insight
robiology (neuron firings corresponding to voltage spikesinto the analysis of spike-train data has appeared. An ISl
[1]), cardiology R peaks of electrocardiogranig]), mem- ~May be considered as a new state variable allowing us to
brane biology(bursting oscillations of the cell membrane characterize the low-dimensional dynamics at the input of a
potential[3]), etc. Systems with this type of dynamics are neuron from the observed spike trd#-8,10-12 Follow-
often analyzed by processing time intervals between the reind Sauei5], the attractor of a chaotic system can be recon-
evant eventgfor example, interspike intervalgSI's) [4]]. structed[13] using a sequence of time intervals only, and
Different models of spike generation are known. Within deterministically driven IF ISI sequences can be distin-
the framework ofntegrate-and-fire(IF) models[5—8], a sig- gwshed' from stochas_tlcglly driven series on the basis of a
nal S(t), being a function of the variables of a low- calculatl_on of the prediction error. SaJér7] glso proved an
dimensional dynamical syste(®S) is integrated from some €mbedding theorem for IF ISI's. Following Hegger and

defined by the equation detailed study of how the different properties of a chaotic

forcing are reflected in an output IF ISI series was performed

Tii1 . by Racicot and Longtif8]. Ding and Yang[12] demon-
jT_ S(hdt=0, 1;=T;.1—T;, i=123..., (1) strated the results of chaos control based on TC ISI process-
60.0
whered is a firing threshold, and, are the interspike inter- (a)

vals (IF 1SI's). When the specified thresholtlis reached, a

sharp pulse is generatdéfig. 1(@)], and the value of the

integral is reset to zero. S
Threshold-crossingnodels(TC) [6], on the other hand,

assume the existence of a threshold le®@elwhich defines

the equation of a secant plage=©® [S(t) is now a variable TR RN AR RR AR AT IRRRTTIIN

of a DY), and measure time intervals between successive 20.000 200
crossings of the given level by the sigr&(lt) in one direc- . t .
tion, e.g., from below and uf¥ C ISI's) [Fig. 1(b)]. From the 200

viewpoint of dynamical system theory, TC ISI's are the
times when the phase trajectory returns to the secant plane.
The problem of ISI analysis is important when, for what-
ever reason, the full sign&(t) cannot be recorded, and only
a sequence of firing times is available in the course of the
experiment. A sensory neuron that transforms a time-varying
input signalS(t) into the resulting output spike trains may
serve as a classical example. This transformation was previ- -20.0
ously investigated within the framework of information
theory[9]. FIG. 1. Models of spike generatiola) integrate and fire, and
A sensory neuron represents a threshold device with ag) threshold crossing. Black points indicate the time moments
input and an output: at the input a signal of complex strucwhen a threshold level is reached. A sequence of spikes represent-
ture is received, and at the output a series of pulses is me#rg the output signal is given at the bottom of each figure.
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ing. In our previous contributiofl14], an interpretation of If we know the equations of a DS generating a phase
return times based on an analytical signal approach and theajectory, e.g., in the form of a set of ordinary differential
notion of an instantaneous frequency for chaotic oscillationgquations,
was suggested, and metrical and dynamical characteristics of
some attractors were computed from TC ISI's. ax . . . s e

In the present work we study how the choice of a firing dat fxu), xeRY ueRT @
threshold and the structure of return times influence the re-

sults of a reconstruction. Our investigations will be carriedwherex is the state vectof, is the nonlinear vector function,
out through the estimation of the largest Lyapunov characéndﬁ is the parameter vector, then the maximal Lyapunov

teris_tic gxpor)en(LCE) A1, Wh.iCh is perhaps_ the most infor- exponent(or the full LCE spectrurncan be estimated using
mative invariant of a complicated dynamical proc¢ss]. the algorithm suggested by Benettin et [@1] and by Shi-
We shall discuss the conditions under which the valugof | -42"3nd Nagashinf@2]. This technique is referred to as

can be estimated from a sequence of TC ISI's using standargl o «candard” algorithm for LCE computinfe3)]. Detailed

algorithms without modifications. _ , _discussions of the various aspects of this technique may be
Our paper is organized as follows. Section Il briefly d's'found in several publicationf4,25.

cusses the methods for LCE computation. Features of the |4 problem of estimation of the largest Lyapunov expo-

reconstruction of dynamical characteristics from spike-train, ot becomes complicated, if Eq®) are unknown. How-
data are the subject of Sec. Ill. In Sec. IV we focus on the, e at present a large number of methods for LCE compu-
influence of the firing threshold and on a qualitative expla-,[(,mOn from experimental data have been develdféd-29.
nation of the obtained results. The various ways in which to obtain dynamical characteris-
tics of chaotic attractors from observed time series are dis-
II. METHODS FOR ESTIMATION OF THE LARGEST cussed in Refd.29]. In the present study we use the method
LYAPUNOV EXPONENT sugg_ested by Wolét al. [26]. This alg(_)nt_hm uses the fact
that in many systems the growth of infinitesimal perturba-
In this section we shall briefly discuss the methods oftions is exponential,
LCE computation in order to introduce some algorithmic pa- M(to)(t—to)
rameters of importance for further analysis. It is well known r(t)=roettotio), ()
that an exponential instability of the trajectories is a charac- . . .
teristic of dynamical chaos. A quantitative measure of thisvézgfrgr:‘:'j t:se nde'?tiggfinbet(\)’\;gﬁnattrlﬁeszgﬂgdt gitécgletra—
instability is the positive LCE characterizing the sensitivityj. y (it dgf' tr? lution in ti Bf initial
of a DS to variations in the initial conditions. The number of 'N¢'€Men 1(to) defines the evolution in time of an initia

positive exponents in the LCE spectrum is determined by thépatlal separation betv_veen two_ state vect.(ﬁﬂ:dx'ne local
number of expanding directions of unstable periodic orbits,grOWth of perturbations is the function of a point in the phase

although more complicated situations may also aftss] Space. To show this circumstance, in this section we indicate
Within the framework of the present study we shall limit the depengerlclel(to), smpet thfet\r/1aluf¢dof _tr}ettlmet;\oment
ourselves to chaotic regimes with a single positive LyapunO\ForrESpon S 10 some point of the nducial trajec ﬂ]he
exponentk ;. While computing\; we shall assume that the average along a typical phase trajectpry yalue of the incre-
phase trajectory, being the solution of a DS for the choseﬁ“en“‘l(t") may be taken as the estimation of the largest

initial conditions, istypical. Otherwise, the value of the ex- LCE. Itn ;t:)t:actlc;e, :chc?. method ?f Re[ZIEIS] ba"tof‘.NS.’t one ttob
ponent estimated during a finite time spBoan significantly compute the rate ot divergence Tor small, but Tinite perturba-

differ from the value which is obtained theoretically in the ';|o_ns.dTh|s rl?a)f/ Ieadtk':o pro!{)rl]ems tl'n |?terpretgt|(t)n (I)tfhthe ﬁbt
imit Tvo. AS an example, Gambauo and TresEEll 5 ey dhouum that the exponential growth may o
described a map with very long transient procegsesing w yticaly W Xp 1alg Y

up to 1500000 iterations it behaves “chaotically” before persist for a finite distance between the orlj@s]. Since

falling into the periodic orbjt From the viewpoint of the dependencéd) is carried out only for small enough values

LCE calculation this means that an apparently stable positiv§(t)’ ren_ormallzatlons must be performed while computmg_
1. In this procedure, new replacement vectors are chosen in

valueh; would be attained after part of the transient processthe direction of the most rapid divergence and with specific

and only after a very long calculation time will the value ". ) . X . - o
y y ‘ong © © es. Dealing with a single trajectory limits the possibility of

decrease to zero. Long transient processes and compl e choice of replacement vectors, and we need to search for
variations of the Lyapunov spectrum typically occur in the Ice ot rep Vectors, and w !
a compromise between minimizing its size and reducing the

vicinity of homoclinic trajectories of a saddle cycle under the rientational error. The restrictions of the vector siz b
destruction of quasiperiodic oscillatiof8]. The phenom- onentational error. .e estrictions ot the vector size can be
flormulated as follows:

enon of riddled basins of attraction that can be observed, fo
instance, in connection with chaotic synchronizat{ds], L<r(t)<l,. 4

also depends on the fact that ttteansversgLyapunov ex-

ponent for specific orbits can differ markedly from the cor- We need to select some minimal valyesuch that the effect
responding exponent for the typical traject¢®p]. To char-  of noise in the experimental data is not accentuated by the
acterize the behavior of a typical phase trajectory onenumerical calculations. The valug sets the condition of a
sometimes uses the concept of finite-time Lyapunov expolinear approachior exponential divergengeand can be in-
nents, which quantify the rate of expansion or contractiortroduced usually as some fraction of the size of the attractor
during a finite-time spai [16]. (e.g., 5—-10%). In the frames of a “variable evolution time”
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algorithm[26], the replacement is performed when the dis- 18
tance between the orbits no longer satisfies the condition of

linear approximationr(>1,). [As an alternative we may use

the “fixed evolution time” algorithm[26], with the replace- kS,
ment procedures at regular intervals in time, provided that S
the distance (t) does not become too large during the given

time spangd. Since the estimation of; is based on the res-

toration of the attractor, the result will depend on the quality 0.6
of this reconstructiorf30]. This leads to the appearance of 00 t 40.0
additional parameters of the numerical computations such as
the embedding dimension, the time delay between the phase
space coordinates of the reconstructed attractor [ £3g.

To end our brief description of the techniques for com- _
puting the largest LCE, let us emphasize a final important o
circumstance. In our study we consider the case when the o,
signal being processedn input signal of IF or TC modgls
a one-dimensional projection of a phase trajectory which be-
longs to a chaotic attractor. When dealing with experimental 0-9(9] 0.0

. ) - X ¢ 140.0
data the dynamical nature of a time series often cannot be
established. If the signal being analyzed is not deterministic FIG. 2. (a) Solid curve representing the linear transformation of
we cannot speak about Lyapunov exponents. In this case, thie forcing signal (14)S(t), and a dashed curve corresponding to
algorithm of Ref.[26] defines only some quantitative char- the result of an interpolation of the points (3(T;). The small shift
acteristics of the sensitivity to the choice of initial conditions in time, which has no significance for the calculation of the LCE,

int

1.14

[31], or a measure of predictability. can be removed if we tak&=S((T;+T;;1)/2) in Eq. (5. (b)
Black points connected by a dashed line are the points of the aver-
lIl. COMPUTING THE LARGEST LYAPUNOV age instantaneous frequency obtained via a Hilbert transformation

at the time moments appropriate to the crossings of a threshold—
o"(T,); white points connected by solid smooth cumg,(t) are
The problem of restoration of the chaotic attractor withthe values of (2/1;)(T;) at the same time moments.

the one-dimensional projection acting as a forcing signal of )
an IF model from interspike intervals was studied in a num-ixéd the thresholdf=35. As a result an underestimated

ber of publicationd5—8,11. The quality of the reconstruc- Vvalue of the largest Lyapunov exponent was obtai(veith
tion depends on the choice of a firing threshéldAs shown ~ an error of about 25%). o

by Racicot and Longtifig], the mean value theorem in some _ Another approach to the problem of LCE estimation con-
approximation allows us to consider an IF IS at high firing Sists of the following: If the sequence of IF ISI's is known,
rates as a nonlinear transformation of an input sig{#): according to Eq(5),

li~0lS, S=S(T). ©) %~%S=k3ﬂ% @)

EXPONENT FROM INTERSPIKE INTERVALS

Since the largest LCE is invariant under nonlinear transfor- . .
mations, the value ok, calculated from IF ISI's should € at fixed moments; we can determine the values of the

coincide with the Lyapunov exponent estimated fr&it). input signal multipligd. by some constaht Knowi_ng the
However, the problem is to find a sufficiently good tech—VaIu.eSkS(Ti).’ and aiming to restore th_e forcmg.3|gnal as a
continuous-time variation, we suggest interpolating a smooth

nique. . . 09~ .

On the one hand, we can consider ISI's only as a discret nction Sin(t) (e.g.,.a cubic gplln)glnto the pomt's 1) at
sequencéq,l,, ... |y, restore the attractor using the delayt € moment;. _Th_e interpolation wil allpw us to introduce
method ;1.1 I 1) [13], and estimate a measure a constant step in time, and to restore with some accuracy the

ioli+1s - - sli+m— ’

of chaoticity as the average rate of loss of information aboan_ear transformation of th_e ‘”p.“t s_ignal, i's‘”t.(t)%ks(t)
Fig. 2(a)]. HenceS;(t) will maintain the metrical and dy-

the initial conditions per “iteration.” The duration of an it- , . )
eration can be taken approximately as the average value gﬁmlcal properties of an attractor correspond_mg to Fhe Ehas
. o — N . otic forcing. Clearly, the above procedure is carried out

the interspike mteryalsl :.(UN)%:lli - We have carried within a certain accuracy, taking into account both the errors

out such a calculation using the ssber system of interpolation and the approximate character of Eg).

dx dy However, as one can see from Figag3 the valuex,; com-

—=—(y+2), ——=x+ay, puted from the signa;,;(t) using the algorithm of Ref26]

dt dt coincides with the result of an estimation)of directly from

(6)  S(t) (i.e., with the largest Lyapunov exponent of the original
continuous systejn Note that we have obtained a signifi-
cantly smaller error of calculation than in the previous case
(where\ ; was computed from a discrete sequence of )SI's

as an example. In analogy with Racicot and Long@hwe  We explain this result as follows. An increase of the number

have chosers(t) =x(t)+40 as the input signal, and have of points in the interpolated temporal dependence in com-

dz
a=b+z(x—c), a=0.15, b=0.2, c=10.0
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0.10 neous frequency during a return tinhe=T,,,—T;, is car-
(@) ried out;T; are the times of crossing of a threshold letigd.,
the times when spikes ocquiSecond, the pointe(T;) are
interpolated by a smooth functiofelso a cubic spline
wint(t) for transformation into a signal with constant time
step[Fig. 2(b)], used for reconstruction of the attractor. It
was shown[14] that the obtained temporal dependence al-

0.06 lows us to describe the qualitative behavior of the average
1.0 T 20 instantaneous frequencyFig. 2(b)], and that the recon-
structed attractor maintains the properties of the chaotic os-
0.10 (b) cillations S(t) [Fig. 3(c)].

Although in the present case we may consider other tech-
niques for computing dynamical characteristisse, for ex-
ample, Refs[28,32), we decided to use the same approach
and to estimate.; from w;,;(t) by means of the method of
Wolf et al.[26]. We suppose that the interpolation allows us
to decrease orientational errors in the same way as for IF

0.06 ISI's.
1.0 T 2.0 Some explanations to the method suggested by Janson
0.10 et al.[14] may be appropriate. The discussed technique does
" (e) not apply to the analysis of periodic oscillations of a period

1. In this casew(T,) = const, and we have a single point in a
phase space. In the presence of noise we obtain some distri-
bution of return times, but an estimation of the dynamical
properties does not allow us to obtain true results. For com-
plex periodic or chaotic regimes a transition to slower tem-
poral variations occur$i.e., w;in(t) is a slower temporal
0.06 function in comparison withS(t)]. However, the metrical

: : and dynamical characteristics are maintained. This is con-
0.10 firmed by a computation of the largest Lyapunov exponent
(d) for the Rsler system, the Anishchenko-Astakhov oscillator,
and a series of other moddl$4].

To examine the workability of the technique for LCE es-
timation in the presence of noise, we added normally distrib-
uted random values to the forcing sigrelith a variance of
1% of the amplitudeand to the threshold levélL% of the
value 6 for IF ISI's, and 102 for TC ISI's). The obtained

0-062 0 9.0 results[Figs. 3b) and 3d)] testify to the stability of the
’ T ’ algorithm to weak disturbances.

FIG. 3. The largest LCE vs time delayat various values of the Figures 3c) and 3d) correspond to a threshol® =0,
parametet,, computed from a sequence of IF ISI's withaqat and  i.€., to the introduction of a Poincasectionx=0 of the DS.
with noise(b) and also from a TC ISI series witho{g) and with(d) In Sec. IV we shall discuss how the choice of a threshold
noise. The embedding dimension was chosen to be equal to $evel influences the result of LCE computations from TC
Dashed lines indicate the valdg of the original continuous system |S]’s.
estimated from the input sign&(t) by means of the algorithm of

Ref.[26] (A1~0.083). The method of Ref21] leads to the result
(A\;~0.09). IV. INFLUENCE OF THE THRESHOLD LEVEL

The problem that we consider in the present study may be
parison with the discrete sequen@ee., an increase of the reduced to the following: Can the dynamical characteristics
number of points in the restored attragtonay lead to a of a chaotic attractor be estimated only from a sequence of
decrease of the orientational error of the replacement vectaeturn times to a secant plane. If y@ghat, actually, follows
while computing the LCE using the algorithm of RE26]. from the results of Hegger and Karjt0]), under what con-

To obtain authentic results we have estimated the LCE foditions? Special interest is connected with the case when the

different algorithmic parameters such as time delays, embedhreshold leve® is introduced in such a way that not all the

ding dimensions, and parametéssspecifying the condition loops of the phase trajectory cross the secant p&naé.

of the linear approximatiohFig. 3(a)]. Consideration of this case will allow us to formulate limita-
The problem of extracting dynamics from a TC ISI seriestions to our abilities to estimate; from interspike intervals.

is more complex. A possible approach suggested in our préFo be sure in our conclusions, we shall compare the results

vious work[14] consists of the following: First, the transi- obtained with three different DS’s chosen as the source of

tion from a set of time intervald; to the pointsw(T;) chaotic oscillationsS(t), namely, the Rssler system, the

=2m/1;, appropriate to the values of the average instantanephron mode[33], and thegs-cell model[3,36]. We shall
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0.12 159%, and may be less if the length of time series incrgases
The dependenck;(®) in Fig. 4(a) was obtained for series
of about 2000 return times.

Outside of the above intervals, the results differ signifi-
cantly from the valuex; corresponding to the chaotic input
signal. The maximal error of estimation occurs ér=5.35.
More detailed calculations ok, performed for several

0-0000 o 18.0 thresholds are shown in Figs(c3 (0 =0), 4(b) (@=11),
’ ' 4(c), and 4d) (® =5.35). The sensitivity of the algorithm to
0.10 the choice ofl, does not allow us to obtain an authentic
() estimation of the degree of chaoticity in the latter case.

Aiming to explain the complex behavior of;(®), we
have analyzed the structure of the return tirffég. 5). In the
region 0=<® <4, a crossing of the threshold level occurs
during each oscillation. The sequence of time intervais
ISI's) is stationary[Fig. 5@], and the size of the attractor
0.06 reconstructed from the interpolated temporal dependence
20 T 9.0 wint(t) using the delay method is defined by the distribution
0.01 of I; [Figs. §b) and Fc)].

(c) An increase of® leads to the absence of a threshold
crossing during some oscillationis's arise with large values
[Fig. 5(d)]. The presence of several temporal scales in a se-
quence of TC ISI’s leads to the appearance of several spatial
scales in the reconstructed attradtbig. 5(e)], and because

of different probabilities for large and smdll's the phase
trajectory will belong to the smaller region of a phase space
(=10-15% of the size of attractofor a large part of the
time [Fig. 5(e)]. The condition of linear approximatiofpa-
rameterl,) should now be introduced for each spatial scale
separately; however, even at the essential reduction of the
given parameter the dependengél,) similar to Fig. 4d) is

kept.

With further increase o, time intervals occur corre-
sponding to three oscillationg=ig. 5(g)]. However, if the

3 probabilities of varioud;’s are of the same order the se-
0.012 guence of TC ISI'§fFig. 5(g)] preserves the dynamical prop-
5.0 Ly, % 8.0 erties of the forcing signa(t). In the region®>13.5 there
are time intervals amonf’s corresponding to five or more

FIG. 4. (a) The largest LCE computed from TC ISI's vs thresh- pgcillations, with probabilities that are very small, but dis-
old level ®. Dashed lines indicate the ranges of ertot2%. (b) tinct from zero[Figs. j) and §l)]. In this region it is obvi-
and(c) The positive exponen_t vsat varioud ,’s for' the thresholds ously impossible to compute the value of the largest LCE.
©=11 and 5.35(d) The maximal LCE v, at variousr's for the On the basis of the above investigations, we can formulate
threshold leveld =5.35. a number of conditions under which one can estimate the

dynamical characteristics of the Bsler system from TC
compare also the “variable evolution time” and the “fixed ISI's using the “variable evolution time” algorithri26].
evolution time” algorithmd26] for the largest LCE estima- (1) The sequence df’s must be stationary, and the prob-
tion. abilities of various return times in the distribution function
must be approximately of the same magnitufde ranges of
I;’s with probabilities distinct from zepo
A. Rossler system (2) The average value of the time interval) (should not

Consider Eqs(6) and introduce, as illustrated in Fig(hl, exceed the characteristic temporal scale of the system under
a secant planex=0. Here, S(t)=x(t). The largest study(prediction time or Lyapunov timg8,37)).

Lyapunov exponent computed from TC ISI's at the different Let us discuss these conditions. The first condition re-
values of the threshold level using the “variable evolutionquires an approximate balance of times during which the
time” algorithm [26] demonstrates a rather complex depen-phase trajectory belongs to various regions of the recon-
dence or®. This is shown in Fig. @). As one can see from Structed chaotic attractor in the presence of several spatial
this figure there are two regions €09 <4 and 16<0 scales. The second condition arises from tﬂe following prob-
< 13.5), within the limits of which the dynamical properties lem: The increase of the average time intedvahder a shift

of the chaotic attractor can be determined with good accuef the threshold level and the resulting excess of some char-
racy (the error of estimation foh; does not exceed 10— acteristic temporal scale of the systéthe prediction timg

0.00

0.028
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FIG. 5. The sequences of TC ISI's, phase portraits restored from the interpolated temporal depeaggndor simplicity we have
dropped the designation “int” in the figurgand distribution functions appropriate ®=0 [(a)—(c)], ® =5.35[(d)—(f)], ®=11[(g)—(i)],
and®=15[(j)-()].

lead to a loss of information about the dynamics. As a contial scales in phase space. Formally, however, the algorithm
sequence, the maximal value, which can be computed of Ref.[26] has no limitations with respect to how the re-

from the TC ISI series decreases inversely proportional to Placement procedures can be carried out.

Fig. 6a)]. However, even if the restrictions ondo not In particular, it is possible to analyze the average rate of
[Fig. ' S divergence for a fixed time spah (the “fixed evolution-
a!low us to obtain the Ia_rgest Lyapunov eXpO”er_‘t the techfime” algorithm of Ref.[26]). However, in this case we have
nique for LCE computation can serve as a qualitative esti

. . ) an additional parameter of the numerical computation$, If
mation of a measure of chaoticity. For example, Fih)6 s chosen small, the calculation time increases significantly

shows the dependence ki on the control parameter of  (the search for nearest neighbors at each replacement proce-
Egs. (6) computed by the method of Ref21,22 in com-  dure taking a major part of the timeReplacements that are
parison with results of an estimation of the largest LCE fromperformed too often may also lead to an increase of the ori-
TC ISI's measured by fixation of the fifth crossing of a se-entational errors. On the other hand, having chosen a large
cant plane. We note the qualitative agreement in the variaf, we risk obtainning an underestimated valugif the di-
tion of the two curves. vergence of nearby trajectories leaves the frameworks of the
The above results were obtained within the framework oflinear approach during the given time span. To obtain an
the “variable evolution time” algorithm which realizes the authentic estimation of the largest LCE, its dependence from
replacement procedures whenever a fixed spatial separatidn should be investigated, along with its dependence on the
between nearby phase trajectories is readieel condition time delay, embedding dimension, etc.
of linear approach As one can see, for the caée=5.35 The “fixed evolution time” algorithm[26] requires more
this technique may not work for attractors with several spa<alculation time. However, it allows us to estimate dynami-
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FIG. 6. (a) Estimation of the maximal LCE whehexceeds the 200 . ©
characteristic temporal scale of a systeh). The largest exponent
computed using the method of Ref&1,22) vs a control parameter
of the Rasler system(solid curve and the values\; estimated T "
from TC ISI's measured from every fifth crossing of the secant ~
plane(dashed curve
. . \ N ‘
cal characteristics of chaotic attractors at the presence of sev- 5.050 7 20,0

eral clearly expressed temporal scales, when it is not always
obvious how to introduce the condition of linear approach
(parametet, in our designations(Fig. 7). Thus the first of
the two conditions is no longer necessary.

n

FIG. 8. () Poincaremap of the Resler system(b) and (c)
Return time maps appropriate @=0 and 11, respectively.

So far, we have mainly discussed the technical aspects ¢gsults, we neglect for a moment the details of the algorithm,

the method of Ref.26]. If, aiming to generalize the obtained

0.12

0.00
0

0.1

0.05

T 10.0

then we can say that the sequence of return times maintains
the dynamical properties of a chaotic attractor even in the
case when not all the phase trajectories cross the secant
plane. Thus, at the restriction to the average valué;’'sf
(second condition the largest Lyapunov exponent is invari-
ant to the choice of a threshold level.

This conclusion is not trivial. A shifting of the secant
plane clearly results in essential changes of the structure of
the return time map. While at the correct choice of the secant
(when all the phase trajectories crogstlite return time map
is similar to some extent to the Poincarap[Figs. §a) and
8(b)], when shifting the threshold level the situation becomes
complicated[Fig. 8(c)]. Before discussing the obtained re-
sults let us consider other sources of chaotic oscillations.

B. Nephron model

Using the Rssler system as an example, we have found
that the largest LCE computed by the method of R26]
does not depend significantly on the details of the replace-
ment procedures if a sequence of TC ISI's contains only one
temporal scal¢Fig. 5(c)]. This is the simplest possible case.
Aiming to test the invariance of dynamical characteristics to

FIG. 7. (a) The largest LCE computed from TC ISI's vs thresh- the change of a threshold, we are interested in processing
old level ® appropriate to the replacement procedures after a fixednterspike intervals with several scalése., with larger

time span(curve 1, and after a fixed spatial separati@urve 2.
(b) The values ofA; vs T, at variouste[2;5] for the threshold

0 =5.35.

ranges ofl;’s). One system demonstrating such a behavior,
in addition to the dependence on the choice of a threshold,
level, is the nephron modgB3].
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The nephron is the functional unit of the kidney. Its main 18
structure is described in the publications by Mosekilde and
Barfredet al. [33]. Here a dynamical model of nephron au-
toregulation is presented in terms of the six ordinary differ-

ential equations §
dp, 1 C,\P,—P P,—P
" 10 P (kPa) 20
dr dv,  Pgay—Peq t
@ a@ e 20
) (b)
dX; P—Py 3X; dX 3(X;—X))
dt Ryen T dt T : °§1
dXs  3(Xp—Xs) &’
de T 10
0.0 ts) 2000

An explanation of the variables and parameter values is
given in Appendix A. The description of Eg3) in more
detail can be found in Ref33] and references therein. We
may note, however, tha®, represents the fluid pressure in
the proximal tubule immediately after the glomerulus. Mea-
surements of this pressure for anesthetized rats show charac-
teristic self-sustained oscillations with a period of 20—40 sec
[34], and for rats with elevated blood pressure the oscilla-
tions tend to become chaofi85]. r denotes the radius of the
afferent arteriole leading blood to the nephron, and the vari- 0 i 1500
ables denotei;,X,, andX; are intermediate variables in a
third order smooth delay. In total, the model represents a B (d)
feedback(the tubuloglomerular feedbarckiith a time delay "

T and a relatively high loop gain. This gain is controlled to a

large extent by the relation between the equilibrium pressure
P¢qin the active part of the afferent arteriole and the flow of

nephronic liquid into the loop of HenleFye,=(P; " . \
—Pg4)/Ruen- The model represents a relatively accurate ac- \f\ Ny
count of the basic physiological mechanisms responsible for 100, 20.0
the chaotic dynamics, and over the years it has been tested ’ 1,(s) ’

and examined in many different ways.

Figures %a) and 9b) show the two-dimensional projec-
tion of the chaotic attractor being the solution to the nephro
model and the temporal dependence of the first variable, the

tubular pressurd;. For any® [Fig. Ab)] the sequence of confirmed at the restriction to. Similar results can be ob-
return times to a secant plafiéig. 9(c)] is similar to the TC  tained if we computer; when changing the control param-

ISI series of a Rssler system at large threshold levels. Thiseter of Egs.(8). This is illustrated in Fig. 1®) (also see
means that the same problems arise, namely, attractors wigkppendix A).

several spatial scales, sensitivity to the choice of replacement
procedure while computing,, etc. C. Pancreatic B-cell model

The results of an estimation of the largest LCE at different o very different example of a system with several clearly
thresholds are given in Fig. (#. We can see that the “vari- eypressed temporal scales is a burst oscilléee Ref[3],
able evolution time” algorithm26], with the replacement ang references therginBursting is a slow alternation be-
procedures defined in terms of a fixed spatial separation beween a silent phase and an active phase of fast oscillations.
tween phase orbits, again lead to underestimated values Consider the equations of th&-cell model proposed by
when chaotic regimes with clearly expressed temporal scaleShermar{3]:

are analyzedicurve 1 in Fig. 10a)]. An acceptable accuracy

1

L)

FIG. 9. (a) and(b) The solution of Eqs(8) in a chaotic regime.
¢) and(d) Series of TC ISI's and a return time map appropriate to
=1.3.

is obtained only under the condition that the probabilities of d_V_ e — V—V,)]/

variousl;’s in the distribution function are of the same order dt “Lleamlk=9sS i
(1.2<©®<1.6). Computing\; by means of the “fixed evo- q ds ©)
lution time™ algorithm[curve 2 in Fig. 10a)] is more effec An,—n)/7, —=(S.—9S)/7s,

tive. Thus the invariance of the dynamical characteristics is dat dt
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-0.01 0.0 —4
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FIG. 10. (a) The largest LCE computed from TC ISI's vs thresh- 130.0
: : (c)
old level ® appropriate to the replacement procedures after a fixed i
spatial separatioficurve 1), and after a fixed time spafcurve 2. . '|
The dashed line indicates the value Yof estimated fromP(t) T [
using the method of Ref26]. (b) The dependence of; on the =
control parameter of Eq98) (see Appendix A computed from
P.(t) using the algorithm of Ref.26] (black point3 and from TC
ISI's (white points. ———
10.0
10.0 I 130.0
lca(V)=0gcam(V=Vca), 1k(V,n)=gxn(V—Vy), "

1
X T T exd (V= V)1 6,]"

X=m,n,S.

In accordance with Ref.36], V is the voltage across the
cell membranen is the fraction of potassium channels that
are open, an@is a slow variable which may be related as
the intracellular calcium concentration. Parameter values for
system(9) are given in Appendix B.

The solution to Eq99) is shown in Fig. 1(a). Shifting of
a threshold level over wide ranges does not significantly
change the probability distribution of TC ISI[§ig. 11(b)]
or the return time magdFig. 11(c)]. Hence the largest
Lyapunov exponent does not depend on the choice of th
threshold, and can be estimated with good accuf&dy.
11(d)]. This again confirms the possibility of extracting dy-
namical properties of a chaotic attractor from a discrete se-
quence of time intervals in the presence of several tempordi2@]. At the transition to interpolated temporal depen-

~388 v -386

FIG. 11. (a) The potential of the cell membran¢) The prob-
ability distribution of return times(c) Return time map(d) The
largest LCE vs the control parameter computed fiéft) by means
&f the method of Refs[21,22 (black point3, and directly from
return times(white points.

scales. dences, for the levab; we shall obtain two smooth curves
Within the scope of the present study we cannot suggest@™(t) and »?(t) passing through the point®;=win(t;)
more general proof of the invariance of the dynamical char=2=/1;, . .. vwzllzwint(ti+3):277/|i+3 and wi= oint(t})
acteristics to the choice of a secant pla@ssuming, of =2x/l, ... ,wizwint(tj+3)=2wllj+3 at the moments
course, that the second condition is satistiedl possible t;, ... t;.3andt;, ... t; 3 [Fig. 12b)]. We indicate each
gualitative explanation consists of the following. of two chosen pieces of the signg(t) by indexesi andj.
Consider, for simplicity, values of the average instanta-The t;’s andt;’s refer to the times when the given pieces
neous frequencyn(t;)=2m/I; at the moments;=il, i.e.,  cross the threshol®,. If the valueDy=|wi— 3| is small

with a uniform step in time. Let us choose two pieces of theenough, the condition of linear approach is also satisfied for
signalS(t), each containing five oscillations as shown in Fig. the distance between the curves during the computation time
12(a). For each of these pieces a small shift of the thresholdthree interspike intervals then the one-dimensional ana-
level leads to the situation when, during the third oscillation,logue of the local Lyapunov exponent can be determined as
the trajectory does not cross the threshold any loffay.  follows [Fig. 12b)]:
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200 0.1

0.0 WMWVW

p 300 1000 N 8000

-15.0
00

1.2 FIG. 13. The positive exponent estimated from the TC ISI series
u); . (b) of the Rassler system vs the length of time series at various thresh-

{ olds ®=11 (dependence)l ® =15 (dependence )2 and ® =17
(dependence)3

other papers, see e.g., R¢8]) it was mentioned that in
practice(when processing finite amount of datthe quality

of reconstruction depends @. Following Ref.[6], at some
levels, “for a fixed embedding dimension the length of dy-
namical time spanned by a reconstructed ISI vector becomes
comparable with the decorrelation time of the chaotic sys-
tem, which has the effect of attractor degrading.”

The aim of our paper is a numerical testing of the possi-
bilities to estimate perhaps the most informative invariant of
a complicated dynamical procesthe largest LCE from
time intervals. Using several models we compute the LCE
with good enough accuracy even in the case when TC ISI
series contain large intervals provided that the mean return
time does not exceed some temporal scalbich corre-

04 sponds approximately to the Lyapunov time, i.e., to the in-
0.0 t 30.0 verse Lyapunov exponentMoreover, if some loops of
phase space trajectory fail to cross the threshold, the value of

FIG. 12. (a) A piece of the signaB(t) and two threshold®;  the LCE can be extracted almost with the same accuracy as
=9 and®,=10. (b) The interpolated temporal dependeneg¢t)  in the case when the crossing of a threshold takes place dur-
and w*(t) for the two pieces of(t) apprr:])prlate to the threshold 4 each oscillation. These results differ from the previous
®,. Black points indicate the valzues off'. (¢ The interpolated computing of correlation dimensiof6], that was signifi-
tempgral dependences'(t) and w’(t) for two pieces ofS(t) ap- cantly more sensitive to the choice ®f Similar results were
g;%irézti;gmfzemt?:rizshlcg;i)2. Dashed curves indicate the depen- obtained for other models8],

B Note also that, in practicevhen processing finite amount
of datg, the results of numerical computations do not sig-
1 D, . nificantly depend on the length of time series if all other
Ni(to) = 3_|_|nD_’ D1=|ws— wyl. (100 parameters are fixetbee Fig. 13, for example The algo-
0 rithm of Ref. [26] is considerably more sensitive to the
choice of initial separations between two orbits in the phase

The insignificant shift of the thresholghe level®,) re-  space. This dependence is similar to the one in Fid). fbr
sults in a change of the sequenc&fs. For each of them the large thresholds, and gives no possibility of estimating the
pointsw?' andwj' remain practically unchanged, and insteadmeasure of chaoticity. The reason for this is as follows:
of 0] and wj there will be one point}', but with a value When large ISI's are analyzed, a smélt finite) perturba-

half as large as in the previous cagég. 12c)]. This, in tion leaves the framework of the linear approach during the

turn, results in changes of the rate of divergence of the trallMme between spikes, and can reach the size of attractor. As a

jectories at the local regions of the attractor. However, thd€Sult, an underestimated value of the LCE is obtaifss

average characteristics of the degree of chaoticity will re-Fig' 4@ for large thresholds

main the same as determined by Ef0) [Fig. 12c)]. A
similar discussion can be carried out for a nonuniform step in
time. Clearly, these arguments do not serve as a strict math- In the present work we have considered two different
ematical proof, and should be interpreted only as a qualitamodels of spike generatiomamely, the integrate-and-fire
tive explanation. model and the threshold-crossing mgdednd have sug-
Note that there are no theoretical results showing how agested a procedure for a transition to a continuous-time
attractor’s characteristics depend on the threshold level. Ivariation for IF ISI's, allowing us to reproduce qualitatively
theory, the correct Lyapunov exponent can be found for anyhe linear transformation of an input signal for the given
0. For example, Sauer’s theordm] has no limitations on model. We have analyzed how the choice of threshold level
the value of a threshold. But, in the wof&] (as well as in influences the results of reconstruction of the dynamical

0.9

12

V. CONCLUSIONS
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characteristics from a series of return tim@<€ ISI's), and  The value ofC, is uniquely defined from an algebraic equa-
showed that under quite general conditions the largedion:

Lyapunov exponent is invariant to the choice of a threshold,

and can be determined from TC ISI's even in the case when
not all loops of the phase trajectory cross the secant plane. Of
course, when speaking about the invariance of dynamical
properties we understand that the largest LCE can be esti-
mated only with a certain accuracy, taking into account both

the finite amount of data and the dependence of the algo-
rithm [26] on parameters of the numerical computations. Let +(P,—P )EC (1—H,)=0
us note that, instead of shifting a secant plane, we could fix a vt YR, T o
constant value of a threshol®¢0) and change only the

amplitude of the input sign&(t). That would lead to similar

+Rebc 1-H +Re H
a Ra a( a) Raa a

R
(b+ —°bH,|C3+ c?
Ra

+

Re Re
Pt_ Pv+ _aCa(l_Ha)+ _(Pt_ Pa)Ha Ce
Ra Ra

conclusions. . ) Model variables.
In our paper the results obtained for asRker system, a : :
nephron model, and a pancreagecell model are demon- Variable Explanation

strated. Actually our study was not limited only to these

systems. Similar conclusions follow from the analysis ofpt Proximal tubular pressure

other models of nonlinear dynamics and mathematical biol! Radius of the active part of the afferent
ogy, for which the possibility of extracting dynamics is con- arteriole

firmed if the average value of the return times does not exX1,X2,X3 Intermediate variables in the delay chain
ceed a characteristic temporal scale of the dynamical systerg., Plasma protein concentration in the effer-
A number of interesting results have been obtained for cha- ent arteriole

otic attractors with several equilibrium points relative to Pq Glomerular pressure

which the movement of a phase trajectory takes pldoce R Flow resistance of afferent arteriole

example, the Lorenz systgnHowever, the analysis of such
systems is a rather complex problem, which will constitute a ¢
separate investigation.

Equilibrium pressure in the variable part of
the afferent arteriole

Pav Average pressure in the variable part of the
afferent arteriole
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_ Ciupb=23.0 nL/kPa W min=0.20
APPENDIX A: NEPHRON MODEL H,=0.5 ¥, =044
The relations between variables in E(®). are as follows: P,=13.3 kPa WVeq=0.38
P,=1.3 kPa C,=54 g/L
_ - P,=0.6 kPa a=22x10"3 kPa(L/g)
Ra=Rad B+ (1—B)r "], d
e Fheno=0.2 nL/s b=0.39x 10" kPa (L/gy
5 Freap=0.3 nL/s p;=1.6 kPa
Pyg=Pi+aCe+bCg, Rhen=5.3 kPa (s/nL) p,=6x10"3 kPa
Ra0=2.3 kPa(s/nL) p;=6.3 kPa
R.o R.=1.9 kPa (s/nL) p,=7.2 kPa
Pay= 0-5( PatPg—B(Pa— Pg)R_;) , w=20 kPa$ ps=4.7 kPa
d=0.04 st T=3 s
Peq: pl(r_1)+p2 explo(r70.8) ,82067 a=14.5
Ps APPENDIX B: PANCREATIC B-CELL MODEL
+¥ p3+ Par + m ,
1+exp :
Model parameters.
3X L1 OUca=3.6 Vip=—20 mV
(?3): - max 3X’:'” , gx=10.0 V,=—16 mV
1+expa( —s) gs=4.0 Ve=—40 mv
TFheno 7=20 ms Om=12 mV
7¢=35 S 6,=5.6 mV
1 \I,eq_q,m_n Vca:25 mV 05210 mV
s=1——|n(—') Vk=—75 mV A=0.85
a q’max_qleq K
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